Magnetic Shape Memory Alloy and Actuator Design
نویسندگان
چکیده
In the field of micromechatronics, microrobotics and specially microfactories, active materials are used in most cases. They permit high resolution and distributed actuation. In this area, Magnetic Shape Memory Alloys (MSMA) are possible candidates. If a lot of studies deal with MSMA, only few applications use them until now. MSMA are attractive active materials because they have large strain (about 10%) as the classical shape memory alloys (SMA), but can provide a 100 times shorter time response. The main disadvantages of MSMA based actuators are the brittleness of the single-crystal material, the difficulty to apply the strong magnetic field required to obtain sufficient strain and the nonlinear behaviour. We propose in this paper a novel MSMA based actuator changing the disadvantage of the hysteretic behaviour into an advantage. This device is a push-pull actuator: two pieces of MSMA material act in an opposite way. The magnetic fields are created by coils and concentrated by ferromagnetic circuits. In order to move the central part of the actuator, a current pulse in the first coil is generated. The hysteretic behaviour of the material permits to keep a stable position when no current is applied. A current pulse in the second coil permits to displace the central part in the opposite direction. The stable position depends on the magnitude and the time duration of the current pulses and an infinity of stable positions can be reached. The use of current pulses permits also a reduction of the coil heating (Joule effect losses) and a reduction of the magnetic circuit size. The performances and characteristics of MSMA are between these of classical SMA and these of piezo-electric materials. A thermo-magneto-mechanical model of our actuator is currently in development in order to design an efficient control law welladapted to the specific MSMA properties.
منابع مشابه
Experimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator
In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind. The current study aims at developing a micro-position control system ...
متن کاملDesign and comparison of high strain shape memory alloy actuators
A simulator is developed to model and design high strain shape memory alloy (SMA) tension actuators. The simulator may be used predict characteristics of a given actuator, or to design its geometry under speci cations such as force, speed, stroke and size. The accuracy of the model is veri ed experimentally in reference to an existing NiTi shape memory alloy prototype actuator. Having developed...
متن کاملFeedforward-Feedback Hybrid Control for Magnetic Shape Memory Alloy Actuators Based on the Krasnosel'skii-Pokrovskii Model
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to impr...
متن کاملModel and experimental verification on actuator of magnetically controlled shape memory alloy
Magnetically controlled shape memory alloy (MSMA) is a new functional material which is found in recent years. The material can produce large induced strain by magnetic field, and has fast dynamic response, high efficiency of electromagnetic-mechanical conversion and excellent controllability. High strains of 10-15% for MSMA materials with different structure are achieved [1, 2]. The complete f...
متن کاملExperimental Study on the Magnetomechanical Characteristics of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy Single Crystals
Magnetic shape memory properties of Ni-Mn-Ga single crystals were characterized by measurement of stress-induced martensite reorientation under constant magnetic fields. Also magnetic field-induced strain as a function of the applied magnetic field under different constant compressive stress levels has been investigated. All the experiments were performed at room temperature in which the sample...
متن کاملDesign of membrane actuators based on ferromagnetic shape memory alloy composite for the synthetic jet actuator
A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic...
متن کامل